二管是用半导体材料(硅、硒、锗等)制成的一种电子器件 。它具有单向导电性能, 即给二管阳和阴加上正向电压时,二管导通。 当给阳和阴加上反向电压时,二管截止。 因此,二管的导通和截止,则相当于开关的接通与断开 。
二管是早诞生的半导体器件之一,其应用非常广泛。特别是在各种电子电路中,利用二管和电阻、电容、电感等元器件进行合理的连接,构成不同功能的电路,可以实现对交流电整流、对调制信号检波、限幅和钳位以及对电源电压的稳压等多种功能 。无论是在常见的收音机电路还是在其他的家用电器产品或工业控制电路中,都可以找到二管的踪迹
结构组成
二管就是由一个PN结加上相应的电引线及管壳封装而成的。
采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结。
由P区引出的电称为阳,N区引出的电称为阴。因为PN结的单向导电性,二管导通时电流方向是由阳通过管子内部流向阴。
二管的电路符号如图所示。二管有两个电,由P区引出的电是正,又叫阳;由N区引出的电是负,又叫阴。三角箭头方向表示正向电流的方向,二管的文字符号用VD表示。

二管的结构组成
二管就是由一个PN结加上相应的电引线及管壳封装而成的。
采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结。
由P区引出的电称为阳,N区引出的电称为阴。因为PN结的单向导电性,二管导通时电流方向是由阳通过管子内部流向阴。
二管的电路符号如图所示。二管有两个电,由P区引出的电是正,又叫阳;由N区引出的电是负,又叫阴。三角箭头方向表示正向电流的方向,二管的文字符号用VD表示。

小功率晶体二管检测方法
1、判别正、负电
(1)观察外壳上的符号标记。通常在二管的外壳上标有二管的符号,带有三角形箭头的一端为正,另一端是负。 [7]
(2)观察外壳上的色点。在点接触二管的外壳上,通常标有性色点(白色或红色)。一般标有色点的一端即为正。还有的二管上标有色环,带色环的一端则为负。 [7]
(3)以阻值较小的一次测量为准,黑表笔所接的一端为正,红表笔所接的一端则为负。(d)观察二管外壳,带有银色带一端为负。 [7]
2、检测高反向击穿电压。对于交流电来说,因为不断变化,因此高反向工作电压也就是二管承受的交流峰值电压。

二管特性参数
用来表示二管的性能好坏和适用范围的技术指标,称为二管的参数。不同类型的二管有不同的特性参数。
伏安特性
二管具有单向导电性,二管的伏安特性曲线如图所示
在二管加有正向电压,当电压值较小时,电流小;当电压过0.6V时,电流开始按指数规律增大,通常称此为二管的开启电压;当电压达到约0.7V时,二管处于导通状态,通常称此电压为二管的导通电压,用符号UD表示
对于锗二管,开启电压为0.2V,导通电压UD约为0.3V。在二管加有反向电压,当电压值较小时,电流小,其电流值为反向饱和电流IS。当反向电压过某个值时,电流开始急剧增大,称之为反向击穿,称此电压为二管的反向击穿电压,用符号UBR表示。不同型号的二管的击穿电压UBR值差别很大,从几十伏到几千伏
正向特性
外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二管导通的正向电压称为死区电压。
当正向电压大于死区电压以后,PN结内电场被克服,二管正向导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二管的端电压几乎维持不变,这个电压称为二管的正向电压。
当二管两端的正向电压过一定数值 ,内电场很快被削弱,特性电流迅速增长,二管正向导通。 叫做门坎电压或阈值电压,硅管约为0.5V,锗管约为0.1V。硅二管的正向导通压降约为0.6~0.8V,锗二管的正向导通压降约为0.2~0.3V。
反向特性
外加反向电压不过一定范围时,通过二管的电流是少数载流子漂移运动所形成反向电流。由于反向电流很小,二管处于截止状态。这个反向电流又称为反向饱和电流或漏电流,二管的反向饱和电流受温度影响很大。
一般硅管的反向电流比锗管小得多,小功率硅管的反向饱和电流在nA数量级,小功率锗管在μA数量级。温度升高时,半导体受热激发,少数载流子数目增加,反向饱和电流也随之增加。
击穿特性
外加反向电压过某一数值时,反向电流会突然增大,这种现象称为电击穿。引起电击穿的临界电压称为二管反向击穿电压。电击穿时二管失去单向导电性。如果二管没有因电击穿而引起过热,则单向导电性不一定会被*破坏,在撤除外加电压后,其性能仍可恢复,否则二管就损坏了。因而使用时应避免二管外加的反向电压过高。
反向击穿按机理分为齐纳击穿和雪崩击穿两种情况。在高掺杂浓度的情况下,因势垒区宽度很小,反向电压较大时,破坏了势垒区内共价键结构,使价电子脱离共价键束缚,产生电子-空穴对,致使电流急剧增大,这种击穿称为齐纳击穿。如果掺杂浓度较低,势垒区宽度较宽,不容易产生齐纳击穿。
另一种击穿为雪崩击穿。当反向电压增加到较大数值时,外加电场使电子漂移速度加快,从而与共价键中的价电子相碰撞,把价电子撞出共价键,产生新的电子-空穴对。新产生的电子-空穴被电场加速后又撞出其它价电子,载流子雪崩式地增加,致使电流急剧增加,这种击穿称为雪崩击穿。无论哪种击穿,若对其电流不加限制,都可能造成PN结*性损坏。
反向电流
反向电流是指二管在常温(25℃)和高反向电压作用下,流过二管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10℃,反向电流增大一倍。例如2AP1型锗二管,在25℃时反向电流若为250uA,温度升高到35℃,反向电流将上升到500uA,依此类推,在75℃时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二管,25℃时反向电流仅为5uA,温度升高到75℃时,反向电流也不过160uA。故硅二管比锗二管在高温下具有较好的稳定性。
动态电阻
二管特性曲线静态工作点附近电压的变化与相应电流的变化量之比。
电压温度系数
电压温度系数指温度每升高一摄氏度时的稳定电压的相对变化量。
高工作频率
高工作频率是二管工作的上限频率。因二管与PN结一样,其结电容由势垒电容组成。所以高工作频率的值主要取决于PN结结电容的大小。若是过此值。则单向导电性将受影响。
大整流电流
大整流电流是指二管长期连续工作时,允许通过的大正向平均电流值,其值与PN结面积及外部散热条件等有关。因为电流通过管子时会使管芯发热,温度上升,温度过容许限度(硅管为141℃左右,锗管为90℃左右)时,就会使管芯过热而损坏。所以在规定散热条件下,二管使用中不要过二管大整流电流值。
高反向工作电压
加在二管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了高反向工作电压值。
http://jsd666.cn.b2b168.com